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ABSTRACT

Modern supervised learning relies on a large amount of train-
ing data, yet there are many noisy annotations in real datasets.
For semantic segmentation tasks, pixel-level annotation noise
is typically located at the edge of an object, while pixels
within objects are fine-annotated. We argue the coarse an-
notations can provide instructive supervised information to
guide model training rather than be discarded. This paper
proposes a noise learning framework based on knowledge
distillation NLKD, to improve segmentation performance
on unclean data. It utilizes a teacher network to guide the
student network that constitutes the knowledge distillation
process. The teacher and student generate the pseudo-labels
and jointly evaluate the quality of annotations to generate
weights for each sample. Experiments demonstrate the effec-
tiveness of NLKD, and we observe better performance with
boundary-aware teacher networks and evaluation metrics.
Furthermore, the proposed approach is model-independent
and easy to implement, appropriate for integration with other
tasks and models.

Index Terms— Noisy label, knowledge distillation, se-
mantic segmentation

1. INTRODUCTION

Fig. 1. Fine and coarse annotations on Cityscapes [1]. Left
and right columns show fine annotations and corresponding
coarse annotations, respectively.
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Although deep neural networks have already achieved
tremendous success in semantic segmentation, their perfor-
mance suffers from noisy labels in training data. As illus-
trated in Fig.1, the annotation in the segmentation task can be
roughly classified into the fine one and the coarse one. Since
semantic segmentation annotation requires assigning a class
label to each pixel of the image, pixel-level annotation of
object edges is easily misaligned. Moreover, high-quality an-
notations are costly and time-consuming. As reported by the
Cityscapes dataset [1], an image with a shape of 2048× 1024
costs 1.5 hours to get a fine label while only 7 minutes to
generate a coarse one. As a result, most of the deep learning
models in the industry have to learn from a lot of noisy data.

Recent studies demonstrate three ways to cope with noisy
data. 1) pre-training on coarsely-labeled images and then
fine-tuning on finely-labeled ones; 2) training robust models
on noisy data; 3) detecting and discarding noise data to get a
clean dataset.

[2] analyzes the effect of data quality on semantic seg-
mentation and proposes the idea of pre-training with noisy
data and fine-tuning with finely annotated data. [3] designed
O2U-Net with intuition, suggested that training with differ-
ent learning rates makes the model transfer from overfitting
to underfitting cyclically, and the average sample losses can
be the indicator of the probability of label noise. [4] proposed
a joint optimization framework of learning DNN parameters
and estimating true labels. And it can correct labels during
training by the alternating update of network parameters and
labels. [5] adopt gradient descent on sound data and learning-
rate-reduced gradient ascent on bad data to avoid memorizing
noisy data.

Knowledge distillation [6] has been widely used in model
compression and transfer learning. This framework intro-
duces soft targets generated by the teacher network and the
student network and considers it an additional optimization
objective, enabling knowledge transfer from the teacher to the
student. [7] introduced knowledge distillation methods into
the task of learning with noise, including a small clean dataset
and label relations in a knowledge graph. [8] train student net-
works using pseudo-labels generated by teacher networks and

2335978-1-7281-7605-5/21/$31.00 ©2021 IEEE ICASSP 2021

IC
A

SS
P 

20
21

 - 
20

21
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

72
81

-7
60

5-
5/

20
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P3

97
28

.2
02

1.
94

14
35

5

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on March 28,2023 at 12:55:18 UTC from IEEE Xplore.  Restrictions apply. 



cyclically swap teacher and student networks’ roles.
Inspired by [2, 5, 9], we attempted to train a robust

model using noisy annotation data. To achieve this goal,
we try to suppress noise in the coarse annotations by a re-
weighting strategy based on knowledge distillation to transfer
the teacher model’s knowledge to the student model, which
allows the student to achieve better performance. Specifi-
cally, the models (both student and teacher networks) gen-
erate pseudo-labels for each sample and re-weight the loss
by mIoU and boundary-aware score calculated between the
pseudo-labels and the accurate annotations. The final weights
are composed of student’s and teacher’s weight, the propor-
tion of which will be adjusted over the training process. In
the first few epochs, the weights calculated by the student
network will be fluctuating and unreliable because of its un-
fitting. However, as training epochs increase, the proportion
of student’s weights increases progressively, which is more
conducive to performance.

2. METHODOLOGY

2.1. Reweight is better than discarding

Many methods are appropriate for image classification but
not effective for semantic segmentation. As for the classifi-
cation tasks, the gradient returned by the noisy annotations
is completely wrong, which is negative for the model opti-
mization process. However, for semantic segmentation, the
wrong pixel annotations usually appear at the edge of objects.
There are still many correctly annotated pixels inside the ob-
ject, which is helpful to model optimization. As illustrated
in Tab.1, the approach with detect-discard strategy is unfa-
vorable for the semantic segmentation task, and we consider
re-weight the sample loss to deal with this problem.

Table 1. The effect of coarse segmentation data. The perfor-
mance of the model is reduced by supplementing additional
coarse data. However, the performance is improved if the loss
weights of the coarse annotations are reduced to half that of
the fine sample.

Num images Method Metric
clean coarse Loss Reweight mIoU BF
4000 0 7 86.88 59.77
4000 500 7 86.14 55.79
4000 500 3 87.44 59.74

2.2. Generate the sample weights by evaluating the qual-
ity of pseudo-labels

Learning the object boundary is quite challenging for segmen-
tation tasks, while most of the noisy pixels are located at the
boundary. We prefer to calculate a sample-level loss weight
to suppress the noise of the coarse annotations, making the

model tend to learn from the fine-labeled cases. The weights
are derived by evaluating the differences between ground-
truth and pseudo-labels generated by the teacher network and
the student network, so we need to consider various evalua-
tion indicators. Since the noise at the boundaries tends to be
very severe, we consider boundary F1-measure [10] as one
part of the loss weights of the samples. The Boundary F1-
measure (BF) could be formulated as follows:

P c = 1
|Bps|

∑
z∈Bc

ps

[
d
(
z,Bc

gt

)
< θ
]

(1)

Rc = 1
|Bgt|

∑
z∈Bc

gt

[
d
(
z,Bc

ps

)
< θ
]

(2)

BF c
1 = 2·P c·Rc

Rc+P c (3)

where Bc
gt is the boundary map of the ground truth seg-

mentation map for class c, similarly Bc
ps is the contour map

for the predicted segmentation map Sps
c. [z] is the Iverson

bracket notation. It converts any logical proposition into a one
if the proposition is satisfied and 0 otherwise. BF indicates
whether the predicted boundary point matches the ground-
truth boundary within a distance error tolerance θ.

However, BF relies on a distance threshold. If there are
no pixels within the distance tolerance range, it tends to be
very low or even close to zero as the Equ.3. In extreme cases,
using a single metric BF can make the weighting strategy tend
to discard samples. As in our analysis in Sec.2.1, discarding
samples is detrimental to semantic segmentation, so we also
take mIoU into account.

mIoU indicates the intersection-over-union between the
predicted map and ground-truth pixel, averaged over all
classes. However, it only captures the relationship between
the pixel sets and cannot describe the matching of the target
boundaries. Yet BF is complementary with mIoU as it more
carefully takes the contours into account. As a result, we con-
sidered both measures simultaneously to calculate the mean
values of mIoU and BF, which we named BFmIoU.

The experiment results are shown in Tab.2, both the in-
dividual metric are effective in improving the model perfor-
mance. However, the group using BFmIoU has a more con-
siderable performance boost than the BF group and mIoU
group. BFmIoU can focus on the boundary of annotations
without discarding the sample, which is an appropriate metric
for calculating weights.

2.3. Obtaining dynamic weights by knowledge distillation

In this section, we proposed the re-weight strategy based on
knowledge distillation for learning with noisy annotations.
Fig.2 shows the pipeline of this strategy.

Firstly, both the student network and teacher network gen-
erate prediction maps for each image, then the segmentation
loss is calculated as usual. However, before the gradient back-
propagation, the loss needs to be re-weighted for each sample
with the proposed NLKD method. The weight is jointly de-
termined between the annotations and prediction maps. After
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Fig. 2. The proposed distillation framework. Firstly, the stu-
dent and teacher network generate pseudo-labels for each im-
age. CE means cross-entropy loss and QE means quality
evaluation. CE module calculates the Loss and QE module
generates the weights of each sample by evaluating the differ-
ences between annotations and pseudo-labels. The distilled
weights Wkd re-weight the Loss and then the Weighted
Loss updates the parameters of the student model.

calculating the teacher and student models’ weights for each
sample separately, NLKD generates the final weight in a dis-
tilled weighted manner. The student network updates param-
eters by optimizing the weighted loss.

There are a student network fs and a teacher network ft,
the segmentation loss could be formulated as the pixel-wise
cross-entropy loss:

Ls(x, y) = −
∑H

h=1

∑W
w=1

∑C
c=1 ywhlog(fs(xwh)) (4)

Where H and W denote the height and the width of the input
image, and C is the number of segmentation classes. The
NLKD could be formulated as:

wf (x, y) = (BF (f(x), y) +mIoU(f(x), y))/2 (5)

Wkd(x, y) = λwfs(x, y) + (1− λ)wft(x, y) (6)

Lb(Xb, Yb) =
∑b

i=1Wkd(xi, yi)Ls(xi, yi) (7)

Where b is the batch size and λ is the parameter used to
adjust student and teacher weights. Since the student net-
work does not fit well at the beginning of training, we set
a warm-up strategy to ensure the weights’ stability and reli-
ability. In practice, we set λ to 0 in the beginning epochs.
After the warm-up period, the student network can generate
good pseudo-labels and calculate sample weight, the value of
λ increases.

For a batch of samples, we calculate the weighted seg-
mentation loss of each batch with NLKD strategy (Equ.7), the
student network updates parameters by minimizing weighted
segmentation loss.

3. EXPERIMENTS

3.1. Implementation Details

In general, we select U-Net [11] and Deeplabv3+ [12] as stu-
dent network, OCRNet [13] with HRNet [14] backbone and

PointRend [15] as the teacher network. All experiments are
performed on four GTX2080Ti GPUs, we set the optimizer
to Ranger [16] with a weight decay 5e−4. The learning rate
starts at 0.1 and changes to 0.5 times the original rate every
25 epochs. We set the number of training epochs to 100 and
batch size to 32 for all trials. Besides, we initialize λ to 0
during the beginning 10 epochs, linearly increases λ to 0.5
through the remaining 90 epochs.

3.2. Evaluation on benchmarks

We selected 2 finely-labeled datasets and 2 coarsely-labeled
ones to evaluate the effectiveness of our re-weight strategy.

Supervisely Fine. Supervisely [17] is a dataset for por-
trait segmentation, which is more finely labeled than other
datasets such as COCO and VOC. We used 4500 images as a
training set, 500 images as a validation set, and the remaining
711 images as a test set. The original version of Supervisely
is named Supervisely Fine.

Supervisely Manual Coarse. We randomly perform dila-
tion and erosion operations on the fine annotations to simulate
the noisy boundary. To simulate the real noisy data and name
this as Supervisely Manual Coarse, we did this for both the
training set and the validation set

Cityscapes Fine. The Cityscapes dataset has clean anno-
tations shown in Fig.1. We name this Cityscapes Fine. There
are 2,975 images in Cityscapes Fine.

Cityscapes Official Coarse. The Cityscapes dataset has
official coarse annotations. We name this Cityscapes Official
Coarse. There are 2,975 images in Cityscapes Official Coarse.

We validate the effectiveness of NLKD strategy on both
coarse-labeled and finely-labeled datasets and report the per-
formance on the same test set. Comparison results on dif-
ferent benchmark are shown in Tab.3 with two metrics used
for semantic segmentation: Mean IoU (mIoU) and Boundary
F1-measure (BF).

We observe that the proposed NLKD strategy obtains
consistent performance gains. By decreasing the weight of
noisy samples, the performance on noisy datasets obtained
improvements. In particular, on Cityscapes Official Coarse
dataset, we improve mIoU by 2.77 and BF score by 8.96.
Moreover, we also achieve an improvement on the finely-
annotated dataset. On Supervisely Fine dataset, we got a 0.66
improvement on the mIoU metric.

3.3. Ablation Study

Tab.2 illustrates the performance improvement of our pro-
posed method at different noise ratios. As for the Method
column, Reweight means to re-weight the sample only using
the teacher model since the teacher model will not update the
parameters so that the sample weights are constant during the
training process. KD means to combine the knowledge distil-
lation framework. If combined, the teacher model and the stu-
dent model jointly re-weight the sample, the sample weights
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Table 2. Ablation experiment with different noisy ratio
Method Performance of student network (mIoU/BF)

Metric Reweight KD 0% 10% 20% 30% 40% 50%
- 87.10/60.01 86.14/55.79 86.13/52.37 84.64/48.62 84.60/44.30 84.74/43.96

mIoU 3 - 86.69/57.60 85.89/53.93 86.38/52.71 85.03/50.02 85.13/43.91
BF 3 - 87.04/59.34 86.60/58.05 85.99/57.53 85.63/53.48 84.45/50.14
BF 3 3 - 87.28/59.51 86.85/58.45 86.20/57.39 85.86/54.63 85.63/54.12

BFmIoU 3 - 86.62/57.31 86.82/57.31 87.24/58.46 87.08/57.89 84.95/46.63
BFmIoU 3 3 87.76/61.12 87.44/59.74 86.94/57.95 86.77/58.55 87.41/59.67 86.80/58.03

Table 3. Evaluate NLKD on public datasets
Dataset Method mIoU BF

Supervisely Fine baseline 87.10 60.01
Supervisely Fine NLKD 87.76(+0.66) 61.12(+1.11)

Supervisely Manual Coarse baseline 84.74 43.96
Supervisely Manual Coarse NLKD 86.80(+2.06) 58.03(+14.07)

Cityscapes Fine baseline 67.97 45.50
Cityscapes Fine NLKD 69.51(+1.54) 48.16(+2.66)

Cityscapes Official Coarse baseline 59.79 34.01
Cityscapes Official Coarse NLKD 62.56(+2.77) 42.98(+8.96)

can change dynamically by fusing the two models’ weights.
The student network will keep updating the parameters during
the training process.

We observe that the weights calculated under the KD
framework perform better. This is because in the later stages
of the training process, the loss weights generated by the
teacher model have been fitted fairly well, and the student
model’s own knowledge becomes effective, similar to a self-
learning approach of downweighting noisy samples. And
different metrics also bring different performance gains. The
results show that BF scores and BFmIoU improve more sig-
nificantly than the mIoU group because BF and BFmIoU take
boundary pixels into account.

Table 4. Comparison on different networks
Student Teacher Method mIoU BF

U-Net [11] - baseline 84.74 43.96
U-Net [11] OCRNet [13] NLKD 85.16(+0.42) 48.92(+4.96)
U-Net [11] PointRend [15] NLKD 86.80(+2.06) 58.03(+14.07)

DeepLabv3+ [12] - baseline 86.70 50.41
DeepLabv3+ [12] OCRNet [13] NLKD 87.59(+0.89) 56.12(+5.71)
DeepLabv3+ [12] PointRend [15] NLKD 87.95(+1.25) 58.06(+7.65)

Table 5. Comparison on different method
ModelA ModelB Method mIoU(ModelA) BF(ModelA)
U-Net - baseline 84.74 43.96
U-Net DeepLabv3+ Decoupling [18] 84.12 43.41
U-Net DeepLabv3+ Co-teaching [19] 84.14 44.57
U-Net DeepLabv3+ Co-teaching+ [20] 83.16 41.56
U-Net DeepLabv3+ NLKD 85.92 51.63

Tab.4 explores the effectiveness of the strategy in differ-
ent student networks and teacher networks. The results show
that in the case where the same student model is all U-Net,

both the teacher models can improve performance. How-
erver, PointRend improves more significantly. We believe
that PointRend is better for object boundaries, providing more
knowledge of the pixel weights of the boundary points. Tab.5
illustrates the comparison results with different approaches,
[18, 19, 20] discard samples so their performance is inferior
to the NLKD strategy. Fig.3 shows the cases with different
weight.

(a) The cases with lowest weight

(b) The cases with highest weight

Fig. 3. Annotation with different weights on Cityscapes Of-
ficial Coarse. The first row is coarsest samples with lowest
sample weight and the second row is with highest weight.

4. CONCLUSION

In this paper, we propose a noise-robust learning framework
based on knowledge distillation and named NLKD, which re-
duces the performance damage from noisy annotations in a
simple and effective way. NLKD generates the pseudo-labels
and then calculates the loss weights for each sample by jointly
evaluating the quality of annotations with the teacher and stu-
dent models. With the weighted loss, the student model tends
to learn the finely labeled samples. The results demonstrate
the effectiveness of this framework and the significance of
boundaries in the semantic segmentation task. Comparison
results on different benchmarks show that the networks are
replaceable in the framework, fully illustrating the flexibility
of this framework.
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